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I. INTRODUCTION

When observations arising from a network fault propagate across domain

boundaries, the fault is described as cross-domain. Troubleshooting faults is a chal-

lenging task—it is even more difficult when trying to troubleshoot cross-domain issues

without knowledge of fault observations and network structure from neighboring net-

work domains. Acquiring knowledge of the needed observations and network topology

is complicated by the fact that it is risky, for both competitive and security reasons,

for domain managers to share this information even when the sharing might ease fault

localization. With business processes migrating to web-services, implemented in the

“cloud” and built on protocols such as SOAP (Simple Object Access Protocol), the

likelihood of network faults impacting multiple domains approaches unity. We see a

dramatic need for methods enabling cross-domain fault localization efficiently while

minimizing the need to share sensitive proprietary information.

Consider the simple failure scenario depicted in Fig. 1. A work group in

Domain 1 must access data from a server in Domain 3 requiring connectivity through

Domain 2. Unfortunately, one of the routers in Domain 2 is misconfigured. Other

groups and services can reach the server in Domain 3, but users in Domain 1’s work

group can’t. Furthermore, no equipment failures along the path from the work group

(Domain 1) to the server (Domain 3) trigger alarms. This is difficult to troubleshoot

without cross-domain collaboration, often resulting in “finger pointing.”

Three approaches are possible for diagnosing cross-domain problems. The first

of these, the status quo, is isolated inference. In this approach, each domain tries

to locate the fault without sharing data with other domains. The second approach,

which we refer to as full disclosure, entails full collaboration and data-sharing between

domains. An inference graph using this approach is equivalent to a global graph of

all domains involved. While full-disclosure, in general, is unrealistic because of the

privacy factor and for scalability reasons, we include it as a baseline model for studying
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workgroup in 
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Domain 2 to reach 
server in Domain 3.

Figure 1. Simple Failure Scenario

inference gains achievable from information sharing. The third approach is privacy

preserving collaboration. In this approach domains exchange limited information,

e.g. summaries of fault observations, to perform inference while protecting sensitive

information.

Recently, Fischer et al [4] proposed the first concrete solution framework for

the privacy preserving approach. The framework allows network administrators to

collaboratively perform probabilistic cross-domain fault localization while preserving

privacy by sharing summarized network causal graphs. The summaries are called

graph-digests. Fischer et al presented a simple scenario to illustrate that these graph-

digests can be carefully crafted to protect sensitive network properties while enhancing

the quality of fault localization.

However, Fischer et al gave neither a thorough experimental evaluation of

their approach nor an evaluation of the trade-offs involved in maintaining accurate

cross-domain inference while preserving privacy. In this paper, we provide the first

comprehensive evaluation of the feasibility of cross-domain fault localization, focusing

on two key questions:

1. Does cross-domain fault localization offer the kinds of benefits warranting fur-
ther research? If the benefits are marginal, there is no reason for operators to
risk leaking sensitive information.

2



2. Can cross-domain fault localization provide deployable and acceptable privacy
protection with manageable complexity? Cross-domain fault localization
should only be deployed if an acceptable level of privacy protection can be
provided with manageable complexity. Operators rightly hesitate to adopt a
solution before understanding the associated security risks.

In the process of answering these questions, we make the following contribu-

tions:

• We have developed a systematic methodology for evaluating the feasibility of a
digest-graph based system. The heart of our method is a complete set of met-
rics for quantifying the performance of a particular digest-graph based design.
It is applicable to any network scenario, any cross-domain fault localization
algorithm, any alternate graph-digest approach, and any technique developed
for eliciting sensitive network properties from those digests.

• To validate our methodology, we evaluated the digest-graph creation algo-
rithm proposed by Fischer et al [4]. We performed extensive simulations of
provider-customer and peering relationships between small, medium, and large
domains. Our results show that graph-digest based cross-domain fault local-
ization improves speed of inference and protects sensitive network properties
while maintaining accuracy in identifying the faults. Our evaluation also re-
veals specific trade-offs between accuracy and privacy protection warranting
further research.

• We have formulated a possible attack against a domain’s causal graph. The
attack is able to reverse engineer topology information about that domain.

In the next section, we present the required details adopted from previous

efforts and develop the terminology used throughout the paper. We continue with

a description of our experimental methodology and associated evaluation metrics in

Section 3. We then report experimental results for the provider-customer and peering

settings, respectively, in Sections 4 and 5. Related work is discussed in Section 6,

Finally, we provide some broad interpretations of our results and conclude with a

summary of our findings.

3
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II. FOUNDATIONS

In this section we introduce the foundations of cross-domain fault localization

as used in this paper. We introduce the terminology and concepts needed to address

the feasibility of cross-domain fault localization.

As defined in [4, 6, 9], a shared risk group (SRG) models a component in the

network (typically hardware) that could cause a network fault. When the component

is malfunctioning, it is said to have failed. A best explanation for a fault is the

set of SRGs whose failure best explains (highest probability) observations of the

behavior of the network. The observations are modeled using observation nodes.

An observation node represents the state of an associated observation (e.g., traffic

is flowing over a link). The state of the set of all SRGs and observation nodes is

described via a probability distribution modeled with a network causal graph. In

particular, a network causal graph is a directed acyclic graph capturing a Bayesian

model [10] of fault propagation in a communications network, with directed edges

between SRGs and observation nodes indicating the existence of a probable causal

relationship. Hence, an observation node having state true implies that one or more

of some set of (connected) SRGs has probably failed.

At a high level, the work of Fischer et al applies to arbitrary Bayesian network

models however for their examples, they restrict the discussion to the restricted set

of models used by the SHRINK [6] fault localization algorithm. SHRINK performs

fault localization using Bayesian inference on bipartite causal graphs. In the bipartite

model, all edges from an SRG connect only to observation nodes. Each edge has

an associated edge weight reflecting the conditional probability of the observation

given the SRG failed: Pr(Observation|SRG). The SHRINK algorithm is simple and

efficient, serving as an excellent vehicle for evaluating the feasibility of cross-domain

fault localization.

In using graph-digest based fault localization, the domain (domain Dj) ad-
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ministrator performing fault localization, receives digests from each of the other n

network administrators (domains Di=1...n) involved in the cross-domain fault local-

ization problem. The algorithm used by Dj merges the digests from each of the

other domains with its own original (referred to as undigested) causal graph and then

performs inference to find the most probable set of SRGs explaining the observed

faults.

In order to establish a frame of reference for combining local network causal

graphs, network domain managers must agree on a set of shared attributes. In this

work, a shared attribute represents a resource provided by one domain and used in

another. It is modeled in the “providing” domain as an observation node and in the

“using” domain as an SRG. An example of a shared attribute might be the state of

a peering point link between two domains. The providing domain, which may own

the physical link, may model the observation state of the link as a shared attribute.

The using domain would then model an SRG node, representing resources from the

providing domain, as the same shared attribute. The shared attribute nodes are re-

moved during the merge process when combining causal graphs for inference. Care

must be taken to ensure that no cycles can form when the causal graphs are joined.

In practice, we observe that a simple rule specifying that no shared attribute SRG

may have a shared attribute observation node breaks potential cycles in our bipar-

tite model. Some information may be lost and there may be conflict of information

challenges. Consider a scenario where the conditional dependencies assigned in one

domain do not match the conditional dependencies assigned in another domain. Do-

main managers must carefully model the events that the shared attributes describe,

and agree on how they are implemented.

Fischer et al measure inference accuracy by comparing performance of the

graph-digest approach against the full disclosure approach. This implementation

fundamentally constrains any digest-approach such that it can never do better than

full disclosure inference. We take a more direct approach by measuring accuracy

6



of the digest-approach against ground truth failures. By using ground truth as our

baseline, we can reason about digest-approach accuracy improvement relative to iso-

lated inference, and the inference cost relative to full disclosure. Next we explore the

experimental methodology and metrics used for evaluating graph-digests as a tool for

cross-domain fault localization.

7
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III. EVALUATION METHODOLOGY

This section details the methodology we have developed to evaluate the feasi-

bility of cross-domain fault localization. The crux of our method is a set of metrics

for modeling various aspects of the performance of a fault localization design based

on the graph-digest approach. The metrics are relatively easy to compute and make

it possible to quantitatively and scientifically evaluate the two key questions posted

earlier.

In addition, we provide rationales regarding the type of inter-domain relation-

ships and topologies we have chosen to model in our simulation experiments.

A. MODELING INFERENCE GAIN

We address two specific questions regarding the benefits of using a digest based

approach:

1. What is the increase in inference accuracy gained by using the digest approach
for cross-domain scenarios compared to the accuracy achieved when domains
perform inference in isolation?

2. What is the decrease in inference accuracy caused by using the digest ap-
proach compared to the accuracy achieved when domains collaborate with full
undigested information?

Question 1 above can be paraphrased as “What do we gain by sharing in-

formation when troubleshooting a problem?” Question 2 looks at the problem from

the other direction: “What do we lose by trying to keep some things secret?” If the

answer to Question 1 is “a lot” then the cross-domain fault localization is effective.

If the answer to Question 2 is “not a lot” then the graph-digest approach is efficient

at realizing the potential accuracy gain of cross-domain fault localization.
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1. Accuracy metrics

How is accuracy measured? Consider n domains performing fault localization

and let BT denote the set of actual faults (i.e., the ground truth). Let the best

explanation derived by an isolated inference, full disclosure, and privacy preserving

approach be Bi for each domain i, Bu, and Bd, respectively. We first consider the

case of isolated inference. Clearly if (BT − (∪n
i=1Bi)) 6= ∅, then the isolated inference

results contain false negatives (some faults weren’t found). The hit ratio [4] (i.e. hs)

measures the percentage of correct results in ∪n
i=1Bi :

hs =
|(∪iBi) ∩BT |
| ∪i Bi|

. (III.1)

Likewise if ((∪n
i=1Bi) − BT ) 6= ∅, then the inference results in isolation have false

positives. The coverage ratio [4] (denoted: cs) measures the percentage of faults in

BT that are correctly identified by ∪n
i=1Bi :

cs =
|(∪iBi) ∩BT |
|BT |

. (III.2)

The overall accuracy of isolated inference (denoted: αs) is the harmonic mean of hs

and cs:

αs =


0 if hs = cs = 0

2·hs·cs

hs+cs
otherwise

(III.3)

The value of αs ranges from 0 (zero accuracy) to 1 (perfect inference). Intuitively, a

small αs value indicates a need for cross-domain coordination.

We follow an identical method for the full disclosure and privacy preserving

approaches. The accuracy using full disclosure (undigested graphs) is calculated:

αu =


0 if hu = cu = 0

2·hu·cu

hu+cu
otherwise

(III.4)

where

hu =
|Bu ∩BT |
|Bu|

, and cu =
|Bu ∩BT |
|BT |

. (III.5)

and the accuracy of the privacy preserving approach is calculated:
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αd =


0 if hd = cd = 0

2·hd·cd

hd+cd
otherwise

(III.6)

where

hd =
|Bd ∩BT |
|Bd|

, and cd =
|Bd ∩BT |
|BT |

. (III.7)

Without special consideration, a failure hypothesis involving x > 1 indistin-

guishable SRGs will result in adding x SRGs to the best explanation every time,

adversely impacting the hit ratio of the guess. We combine these nodes into a single

SRG to calculate the αu, αd, and αs scores. Consolidating indistinguishable SRGs is

consistant with the SCORE [8] fault localization algorithm.

To quantify the inference gain from using the privacy preserving approach

(i.e., to answer question 1 above), we propose to compute the difference between its

inference accuracy and the accuracy achieved by domains in isolation:

A = αd − αs (III.8)

The value of A ranges from −1.0 to 1.0. A positive score means that sharing digests

improved fault localization, a score of 0.0 means there was no improvement, and a

negative value means that using a graph-digest approach was worse than isolated in-

ference. For example, suppose BT = {S1, S4}, ∪iBi = {S2, S5}, and Bd = {S1, S5}.

We have hs = cs = 0 and hd = cd = 0.5. Thus, the inference gain A equals 0.5 for

this case.

Similarly, we propose to measure the cost of privacy protection (i.e., to answer

question 2 above) with the following metric:

C = αu − αd (III.9)

where C should range from 0.0 to 1.0, with a larger value indicating a higher cost.

Continuing with the example above, C would be 0.5 if the full disclosure approach

achieves perfect accuracy, i.e., Bu = BT , which implies αu = 1.0.

11



Note that, since the shared models are smaller, the digest based approach

require dramatically less computation as compared to the full disclosure approach.

In other words, the digest based approach is much more scalable. Section 3 discusses

how to quantify this benefit.

B. MODELING PRACTICALITY ISSUES

With respect to the practicality of using graph-digest based fault localization,

we ask:

1. How well is privacy protected for realistic metrics?

2. Are the inference gains consistent across different network domain types and
sizes?

3. Is the digest based approach scalable in terms of inference running time?

We address these questions below.

1. Privacy metrics

Prior work [4] advocates using the information theoretical Kullback-Leibler

(KL) distance [3] to measure how well the digest based approach protects a domain-

local property. Although the KL distance is an ideal metric to measure privacy

preservation, it is extremely difficult to apply in practice as to compute KL distance

one needs to know (or estimate) the prior probability distribution the adversary uses

(explicitly or implicitly) to guess the secret. In this paper we explore a more pragmatic

approach: characterize the effectiveness of various attacks using a digest to learn

specific sensitive properties about the digest’s source domain. Specifically, we provide

a systematic method for experimentally evaluating attacks against a causal graph.

Modeling a Causal Graph Attack. We emphasize that the focus of this

paper is on developing a general evaluation methodology, not developing the most

effective attacks on causal graphs. Not surprisingly, our literature search did not

uncover previous work addressing attacks on a causal graph. We explored different

12



S4 S1 S5 S4S2 S6 S3

A1 L1 S4L2 L3

Figure 1. Example causal graph.

properties that a causal graph could reveal about a network, and did not find a

meaningful sensitive property for which we could realistically construct a distribution

about the property from an adversary’ perspective. Instead, we developed a heuristic

to learn a domain’s topology (routers, switches, physical and VPN links, etc.) from

a causal graph of the network.

We implemented our heuristic to specifically attack SHRINK-style bipartite

causal graph-digests. We assume that information such as prior probabilities and

conditional probabilities have been anonymized by setting all respective values to the

same strength. For brevity we present a simplified description of our attack heuristic.

Our attack iterates through all observation nodes in the given graph. If an ob-

servation node is a shared attribute (e.g., circuits in provider-customer relationship),

we assign all parent nodes to that observation node as gateway routers. Otherwise,

we check if the observation node is the child of a shared attribute, and if so, desig-

nate all other parents of the observation node as gateway routers. Finally, if neither

of the above conditions is met, we find the first SRG parent node with a degree of

one. There are exactly three parents to check in this loop of the algorithm since

the observation node represents an IP link between adjacent routers and/or switches:

one point-to-point link and two routers and/or switches. This SRG can only be a

point-to-point link or stub router. The SRG is assigned as a point-to-point link and

the remaining two parents are assigned as adjacent routers.

Consider the example causal graph in Fig. 1. The causal graph has SRG

nodes S1 . . . S6, observation nodes L1 . . . L3, and a shared attribute observation node

A1. Suppose we know that A1 represents a peering-point shared attribute. We now

13
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Figure 2. Topology produced by our attack heuristic.

conclude that S4 is a gateway router. Next we observe that L1 has 3 parent SRG

nodes, with S1 having a cardinality of 1. We determine that S1 is most likely a point-

to-point link connecting the gateway S4 and an adjacent router: S5. We now have

nodes S4 and S5, and edge (S4, S5) in a graph representing the topology. Applying

the same reasoning with L2 and L3 allows us to add node S6 and edges (S5, S6) and

(S4, S6), resulting in the topology shown in Fig. 2.

Modeling Attack Effectiveness. There are many properties that a net-

work domain administrator may consider sensitive. However, relatively few of these

can be inferred from a causal graph of the domain. Properties such as detailed cus-

tomer information or operating system details, are most likely abstracted away in a

causal graph. We have identified four sensitive properties for evaluation of privacy

protection:

• Domain network diameter

• Number of routers in a domain

• Degree of the node with the highest degree in a domain

• Internal reachability between a pair of visible gateways.

For each digest, we first run our attack heuristic on it to infer the domain

topology and then derive values for each of the sensitive properties from the topology.

Eventually, we obtain a collection of sample values for each property from each target

set of scenarios. We use the following metrics to model the effectiveness of the attack

against a property.

14



• Root mean square error (rMSE).

Let X = {x1, x2, ...., xm} represent the collection of samples for a set of m
scenarios where the property has a fixed true value of P . rMSE for that
scenario set is defined as follows:

rMSE =
√
E((X − P )2) =

√√√√ m∑
i=1

(xi − P )2/m (III.10)

The interpretation of rMSE is straightforward: if the rMSE value is large
relative to the true value P , we consider the attack unsuccessful.

• Generalized standard deviation (gSTD).

Usually the standard deviation, like rMSE, should be defined with respect to
a set of scenarios where the property’s true value is fixed. We generalize the
definition to consider samples from all scenarios used in the evaluation. Let
{x1, x2, ...., xM} represent the collection of samples for all M scenarios. gSTD
is computed like a usual standard deviation:

gSTD =
√
E((X − E(X))2) (III.11)

gSTD has a desirable feature: it captures how well the attack algorithm tracks
the fluctuation in the true value of the property. We will articulate more on
this point in the Discussion section. The attack is not effective if gSTD is small
relative to the sample mean E(X). For this reason, gSTD can be viewed as a
good indicator of the KL distance.

2. Generality

Several factors warrant consideration when evaluating the generality of the

digest based approach to cross-domain fault localization. First, sizes of real networks

may vary greatly. Second, the networks may have diverse topological structures (ring,

star, mesh, number of neighbors, etc.). Third, domains may use different inference

tools for troubleshooting. Fourth, the privacy and security requirements can differ

greatly from domain to domain. Last but not least, a domain may have either a

provider-customer or a peering relationship with each neighboring domain.

It is unrealistic to require a digest creation algorithm to work optimally with

respect to all of these factors. In this paper, we restrict our evaluation to consider

two factors: network size and the type of relationship between domains. We conduct

15



createBipartiteDigest(G)

1: Add node Lnew to G
2: for all SRG Si ∈ G
3: if (for all edges (Si, Lj) ∈ G, Lj is up)
4: then Prune Si and its edges (Si, Lj)
5: else
6: Collect edges (Si, Lj) ∈ G such that Lj is up
7: if At least one such edge exists
8: Add edge (Si, Lnew)
9: Prune collected edges (Si, Lj)

10: Remove all isolated observation nodes Li

11: for all SRG Sx, Sy ∈ G
12: if Sx and Sy are indistinguishable
13: Aggregate Sx and Sy into S ′x such that S ′x = Sx ∪ Sy

14: Rename all SRGs that are not shared attributes
15: Rename all Observation nodes other than Lnew

Figure 3. Algorithm for computing a digest from a bipartite causal graph G. [4]

two sets of experiments for a pair of cross-domain relationship styles: one modeling

the provider-customer relationship and the other modeling a peering setting. Note

that most, if not all, inter-domain relationships fall into one of these two categories.

We construct three topologies (small, medium, and large) for each relationship style

to capture a range of domain sizes and to assess the effects of scale.

As our target of evaluation, we have chosen the same digest creation algorithm

used by Fischer et al [4] with one modification. The algorithm uses simple techniques,

such as node and edge pruning, partial evaluation, aggregation, and node renaming.

The original algorithm uses Noisy-OR computation to adjust edge strengths in the

digest causal graph based on the number of “up” neighbors for a network device.

We found that to be very revealing about a domain network topology and, therefore,

have replaced the Noisy-OR with logical OR in our implementation of the algorithm.

A full specification of the algorithm is depicted in Fig. 3.

Our selection of this algorithm was driven by two considerations: First, it is the

only one that is available. The focus of this work is on the evaluation methodology

16



and hence we leave the development of potentially more effective digest creation

algorithms to future work. Second, the use of a straw-man algorithm could potentially

strengthen the conclusion drawn from the evaluation. If a rather simplistic digest

creation algorithm were to perform promisingly, it would be reasonable to conclude

positively about the feasibility of cross-domain fault localization when more polished

techniques are used.

3. Scalability

Although the SHRINK algorithm achieves polynomial time inference by as-

suming no more than 3 concurrent SRG failures [6], the algorithm still must consider(
n
1

)
+
(

n
2

)
+
(

n
3

)
hypotheses 1, with n here denoting the total number of SRGs. The com-

putation complexity for SHRINK is O(n4). Clearly, by compressing causal graphs,

the digest approach will reduce n resulting in a far fewer hypotheses to consider vs.

full disclosure. As a result, the digest approach is more scalable in terms of inference

running time.

To validate this claim, we propose to directly measure the inference running

times of the two approaches. Let tu and td represent the recorded average running

times for the full-disclosure and privacy preserving approaches, respectively. We

introduce the following metric to quantify the scalability improvement:

E = log10(
tu
td

) (III.12)

E measures the order of magnitude of reduction in inference time gained by using

the digest approach as compared to full disclosure. A value for E much greater than

0 reflects significant savings in inference time by using the digest strategy, while a

value close to 0 reflects little or no savings, and a value less than 0 means that the

digest strategy has actually caused an increase in inference time.

1After abstracting away the null hypothesis and the “not in the model” hypothesis

17



C. FAILURE SCENARIOS

There are total of 6 different topologies: We evaluate two types of relationship

between domains and for each relationship type we create three topologies (small,

medium, and large). For each topology, we collected data for single and double fail-

ure scenarios. If an observation node could exist in another domain that provides

evidence about an SRG, we define that SRG as a cross-domain SRG. We generated

failure scenarios randomly, but to favor scenarios that may require cross-domain fault

localization, we constrained failure selection such that at least one failure must be

a cross-domain SRG. We evaluated all single failure scenarios that satisfy this con-

straint. We executed three data collection cycles of fifty failure scenarios each for the

double failure scenarios, yielding 150 distinct double failure scenarios for the small

and medium topologies. For both of the large topologies, we executed two collec-

tion cycles of twenty-five failure scenarios, resulting in fifty distinct double failure

scenarios.

As explained earlier we use the SHRINK [6] algorithm to perform inference for

each failure scenario. The case of isolated inference is straightforward. Inference was

first performed separately on each domain’s own causal graph, and the resulting best

explanations were then combined into B1∪B2. In the case of full-disclosure, the causal

graphs of the two domains were simply combined and the inference was perform on

this combined graph to produce Bu. Finally, in the case of privacy-preserving, the

causal graph of domain 2 was first processed with the digest creation algorithm. The

resulting digest was then combined with the causal graph of domain 1 and inference

was performed on the combined graph to produce Bd.

In the next two sections we apply the evaluation criteria discussed above to

evaluate the digest strategy against these customer-provider and peering scenarios.

18



IV. PROVIDER-CUSTOMER SETTING

In this section we employ the above methodology to explore cross-domain

fault localization performance in provider-customer situations. In a provider-customer

relationship, one domain (the provider) provisions network backbone connectivity to

a second domain (the customer). In many cases, the provider’s physical topology

(e.g., SONET connections multiplexed on fiber) isn’t observable by the customer.

The customer only sees IP connections entering the edge device on one side of the

provider’s cloud and exiting on the other. Sometimes only a core router is visible.

In any case, many sources of faults aren’t visible to the customer. Furthermore,

configuration problems on either the customer’s or the provider’s side may result in

faults that aren’t readily observable by both parties.

For the provider-customer topologies, with our assumption that failures are

not total in the provider network and individual IP flows are not instrumented for

fault detection, we deny observations about customer flows to the provider.

A. PHYSICAL TOPOLOGY

We evaluated the digest-based information sharing approach in a simulated

provider-customer network setting in which a customer transits the provider domain
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Figure 1. Provider-Customer Physical Topology.
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using three leased circuits. We use the topology presented by Fischer et al [4] for

our small topology depicted in Fig. 1. We grew the customer topology on each

side, adding sub-components to reflect realistic network topology elements to create

the medium and large network topologies. The small, medium, and large customer

network domains have 18, 54, and 204 routers respectively. The sub-components

in the expanded network have varying properties, such as node degree and distance

between elements in the domain, and are connected in mesh, star, ring, and ad hoc

topologies. The provider network (Domain 1 in Fig. 1) consists of Optical Digital

Cross Connect switches and fiber to transit customer traffic. We focus our study on

finding cross-domain faults that occur between the provider domain and one of its

customers: Domain 2 in Fig. 1.

B. CAUSAL GRAPHS

As illustrated in Fig. 1, the Domain 1 circuits have 2 optical cross connect

switches (O1 and O2) and 4 fiber spans (F1 . . . F4) as SRGs. In Domain 2 (the cus-

tomer domain) we model each router (R1 . . .R18) and point-to-point link between

adjacent routers (e.g., R1 − R3) as an SRG. Every SRG failure in the customer do-

main generates observations about the failure. We model the IP connections between

each pair of adjacent routers; the 3 internal VPN tunnels (R2−R3), (R3−R6), and

(R15−R17); the cross-domain IP connections (R4−R11) and (R11−R12); and the

cross-domain VPN tunnel (R3− R15) as observation nodes in Domain 2. The three

leased circuits underlying the cross-domain IP links serve as the shared attributes for

this setting, with Domain 1 modeling the shared attributes as observation nodes, and

Domain 2 modeling the corresponding shared attributes as SRG nodes. We have nine

cross-domain SRGs from both domains (O1, O2, F1 . . . F4, R4, R11, and R12) in the

customer-provider setting.

We show the Domain 1 causal graph in Fig. 2. We label the fiber links between

the optical switches as F1...4, the optical switches as O1 and O2, and the shared
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Figure 2. Domain 1 partial causal graph.

P1-2 P1-3 R2 R18R4 A1 A2 A3 R11 R17

L1-2 L1-3 V2-3 L4-11 V3-15 L11-12 V15-17 L17-18

P17-18R1 P15-18

SRGs

Observation Nodes

Figure 3. Domain 2 causal graph.

attributes as A1...3. Each shared attribute A1...3 represents one of the circuits leased

by Domain 2.

As the provider domain has many cross-domain SRGs for many customers,

we chose the provider domain to perform inference on behalf of its customers for the

privacy preserving approach. For each of our failure scenarios, the customer domain

generated a digest for inference by the provider domain. We present the Domain 2

small topology causal graph in Fig. 3. We identified routers R1 . . . R18, the point-to-

point links Px−y where x and y are the pair of adjacent routers Rx and Ry, and the

shared attributes A1...3 as the SRGs. The observation nodes are the IP links between

the routers Lx,y and VPN tunnels Vx,y, where x and y designate the routers on either

end of the connection as in the point-to-point links.

We depict the Domain 2 digest created after observing connection failures

L4−11 and L11−12 in Fig. 2. The SRGs R4, R11, and R12 have been anonymized as

S1...3, and IP links L4−11 and L11−12 as L1 and L2. Only the special observation

node Lup observes an “up” state and all other observation nodes report a “down”

state. All SRG prior probabilities are set to a uniform value; likewise all conditional

dependencies (the edges) have a uniform value.
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Figure 4. Domain 2 digest.
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Observation Nodes

Figure 5. Union.

We use a node collapsing methodology to form a union between the causal

graphs, which starts by merging the shared attributes from each causal graph. Next,

each observation node inherits all conditional dependencies from all shared attributes

on which the observation node is dependent (e.g., if an edge exists from a shared

attribute to an observation node, then all edges into the shared attribute from an

SRG are copied to that observation node). Finally, the shared attribute nodes are

removed. As an example F1 has an edge to A1 in the Domain 1 causal graph (Fig. 2)

and A1 has an edge to L1 in the Domain 2 digest(Fig. 3), thus F1 gains an edge to L1

in the causal graph union. The union of the Domain 1 causal graph with the Domain

2 digest is depicted in Fig. 5. For the interested reader, SHRINK inference returns F3

as the best explanation in both the full disclosure and privacy preserving approaches

for this sample scenario.

In our topology (Fig. 1) F1, F2, and O1 are indistinguishable to SHRINK, and

fully 1
3

of our failure scenarios contains one of these three SRGs as having failed. We

combine these nodes into a single SRG to calculate the αu, αd, and αs scores.
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Figure 6. CDF of A metric for the 3 topologies.
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Figure 7. CDF of C metric for the 3 topologies.

C. EVALUATION OF ACCURACY RESULTS

For all but 2 of 377 tested scenarios αd ≥ αs, resulting in non-negative accuracy

improvement scores A (Fig. 6). The average A score is 0.186, 0.152, and 0.175 for

the small, medium, and large topology respectively. The maximum A score for each

topology is 1.0. Although A can be negative and worsen the inference results, we

observe an accuracy improvement in more than 28% of our test scenarios for each

topology (indicated by a circle in Fig. 6). Our results indicate that scaling the domain

size has little impact on the accuracy of Bd, B1 ∪B2, or A with respect to BT .

The cost metric C depicted in Fig.7 shows a minimal cost in using the digest

approach. The cost to inference equals zero in all but nine test cases, meaning that

the digest approach achieved the same accuracy as the full disclosure approach in

97.6% of the 377 tested scenarios. The C score average is 0.005, 0.002, and 0.006

and maximum value is 0.2, 0.17, and 0.2 for the small, medium, and large topology
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c

Small Medium Large
Degree 1.73 (4) 4.49 (7) 5.61 (8)
Diameter 2.13 (5) 8.41 (11) 20.73 (23)
Routers 9.59 (18) 45.18 (54) 195.88 (204)

Table 1. Privacy metric rMSE versus (true value).

Node Domain Number
Degree Diameter Routers

gSTD 0.97 0.74 2.54
E(X) 2.58 2.74 8.72

Table 2. Privacy metric gSTD versus sample mean.

respectively.

The digest algorithm in Fig. 3 potentially degrades A. The logical-OR treat-

ment for edges to Lup removes evidence about the liveness of an SRG. Additionally,

the aggregation step, exaggerated by using uniform prior probabilities, lumps ad-

ditional SRGs into a best explanation for αd. Since all equipment identified in a

hypothesis would have to be checked, we unravel all SRGs that have been aggregated

into an SRG in a best explanation. Consequently, aggregation potentially adversely

affects hd, and ultimately αd and A. In spite of the information loss, the privacy

preserving approach performed remarkably well as discussed above.

D. PRIVACY EVALUATION RESULTS

To compute the privacy protection for the customer we attacked each digest

using our heuristic as described in Section 3. We did not attempt to hide informa-

tion and did not perform post-processing of the digests to reduce the information

leaked, but rather tested to see how much information leaked using the simple digest

algorithm described in Fig. 3.

We can see in table 1 that the generalized standard deviation for each privacy
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Figure 8. CDF relative error for the diameter property.

metric is low compared to the mean. This result means that there is little variation

in the amount of information learned about each sensitive property from each digest

attack. As depicted in Table 2, the root mean squared error is high relative to the

true value. This outcome means that the information learned from the attacks is

generally far from the true values. These results suggest a reasonable level of privacy

protection considering our use of a straw man digest creation algorithm for our attack

heuristic.

To provide more detail, we calculated the relative error of the attack results

versus the true value for each sensitive property. We present the results expressed

with a CDF (less reachability) for each domain size in Figs. 8 - 10. We discuss the

reachability results next.

The reachability metric is binary with a one, the true value, representing

internal reachability between two externally visible gateways in the customer domain.

These gateways are two hops distant in the customer domain for each topology. Only

7 of the 377 failure scenarios identified the reachability between the nodes.

As the network size increases, the inferred diameter deviates further from the

true value (Fig. 8). At 50% mass of our experiments, the relative distance is approx-

imately 40%, 80%, and 90% for the small, medium, and large topologies respectively.

This result bodes well for the inherent protection provided by the digest approach as

a network domain size scales up.
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Figure 9. CDF relative error for the number of routers property.

As shown in Fig. 9, we found the relative distance between the number of

routers in a network and the number detected from attacking the digest to increase

with topology size as with the diameter. Intuitively this results makes sense as each

attack discovers one or more anonymized subgraphs that are either connected to one

or more gateways or represent anonymized internal topology. In general the topology

learned consists of a neighborhood around one or two routers. Multiple failures whose

neighborhoods intersect allow a larger portion of the topology to be inferred. Each

digest only provides small snapshot of the Domain 2 causal graph, largely explaining

the low gSTD results.

When a failure impacts a VPN tunnel, as do 7
9

of the failure scenarios, infor-

mation about the neighborhood around each router on the tunnel is revealed. The

VPN tunnels do have an inherent protection feature in that an IP link representing

the VPN tunnel will most likely have more than three parents in a digest. This creates

ambiguity in determining router adjacencies along the tunnel for the attack heuristic

we used. This ambiguity causes some minor variation in the gSTD results.

We seeded the topologies with an unfavorable setting for the node degree

sensitive property by placing a router with high degree at the gateway in the customer

domain. The node aggregation and Noisy-OR steps performed by the digest algorithm

(Fig. 3) did surprisingly well in hiding the true value of the node degree for some of

the attacks (Fig. 10). The true degree was revealed in approximately 13% of the
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Figure 10. CDF relative error for the node degree property.

Small Medium Large
Topology Topology Topology

E 1.00 2.81 4.84

Table 3. Scalability results.

attacks, and the property did not scale with the network domain size. We would

expect better inherent protection if we had placed the high degree node in interior of

the Domain 2 topology.

From the privacy results we suggest that a privacy metric whose true value

naturally grows with the sheer size of a domain receives inherent protection using a

digest approach as the size of a network domain scales up. The network diameter

and the number of routers naturally grow with a network domain’s size, while a high

degree node or an interior path between two gateways remains fairly static: an attack

either finds it, or it doesn’t.

E. SCALABILITY EVALUATION RESULTS

To compute scalability E we measured the average elapsed real time to com-

pute SHRINK results for up to three failures for the small, medium, and large topolo-

gies respectively. The simulations were run on a 1.61 GHz computer with 960 MB

RAM running Windows XP, service pack 3.
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As expected, the SHRINK running time increased significantly as the number

of SRGs increased. We can see the increase in scalability E by using the privacy

preserving approach in Table 3. Of particular note, inference time improved from

hours to mere minutes on the large topology.
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V. PEERING DOMAINS

In this section we examine fault localization performance of two peering net-

work domains. The two domains share multiple peering points and web service con-

nections. Ownership of the shared links and hosting of the services is equally dis-

tributed between the two domains. IP link and web service failures are fully visible,

and we consider device failures as total: an SRG failure causes an observable failure

event.

A. PHYSICAL TOPOLOGY AND CAUSAL GRAPHS

As with the provider-customer relationship, we start with the topology pre-

sented by Fischer et.al. [4], and modify and grow our topology size to incorporate

realistic network domain subcomponents. We present our small physical topology in

Fig. 1. The peering domains in the small topology have two peering points (R4−R11)

and (R6 −R17) and four cross-domain server-server connections. The servers are de-

picted as W1 . . .W5 (we do not depict the connections for brevity). We model the

medium topology with four peering points and eight web service connections, and the

large topology with eight peering points and sixteen web service connections.

We model the SRG and observation nodes as in the customer-provider rela-
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Figure 1. Peering Domains Physical Topology.
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tionship, and use the same notation. The set of cross-domain SRGs from which each

failure scenario must have failed component contains every peering point router and

link, and every router and link on the shortest path between the servers for each web

service. We identified 24, 42, and 68 cross-domain SRGs in the small, medium, and

large topologies respectively.

We have two types of shared attributes for this scenario. The first type rep-

resents the peering links between the domains. For each link, we chose one domain

to own the link, and this domain models its observation node as a shared attribute.

The peering domain models the corresponding shared attribute as an SRG node.

Both domains see the state of the IP link between the domains. The second type of

shared attribute describes whether a pair of servers can connect with each other. For

each web service, the domain hosting the service models the observation node for the

connectivity with a shared attribute, and the domain on the client side models the

corresponding shared attribute as an SRG.

B. ACCURACY EVALUATION RESULTS

Initially, we had puzzling inference results as the αs, αu, and αd scores were

all low. SHRINK [6] tends to omit point-to-point links and stub routers from multi-

ple failure scenarios using the default settings, instead of attributing the evidence of

failure about these components to an error in the SRG database. Although merely a

nuisance in the provider-customer setting, the problem became magnified in the peer-

ing domain setting due to the large number of links identified as cross-domain SRGs

(e.g. the peering links and links on the web service shortest paths). Additionally,

failures with low probability mass in one domain caused ambiguous inference results

for Bi in the other domain. Our SHRINK model did not include a method for the

inference to return Bi = ∅, which became a necessary feature in the peering domain

setting.

To counter the issue of SRG omission, we lowered the prior probabilities of the
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Figure 2. CDF of A metric for the 3 topologies.

SRG nodes from 10−5 to 10−3. Now the inference engine prefers to add an additional

SRG first, and assumes an incorrect SRG database mapping second. To correct

the null hypothesis problem, we implemented a low probability “Not I” node which

indicates no failures internal to a domain. Using the low probability node is consistent

with SHRINK.

The accuracy improvement metric A for the peering topologies is depicted in

Fig. 2). In all but 1 of 484 tested cases αd ≥ αs, resulting in non-negative accuracy

improvement scores A. In our tested scenarios, we observe a minimum accuracy

improvement of more than 26% for each topology (highlighted with a circle in Fig. 2).

The A score average is 0.09, 0.062, and 0.124 and maximum value is 1.0, 0.33, and

0.5 for the small, medium, and large topology respectively. Our results indicate that

scaling the domain size has little impact on the accuracy of Bd, Bi, or A with respect

to BT . We see a slightly greater improvement in the large topology, which we attribute

to the rich number of cross-domain web service connections.

As shown in Fig.3, the cost metric C is 0.0 (no cost) for all failure scenarios.

The results mean that for all 484 tested failure scenarios, the digest approach achieves

the same inference results as the full disclosure approach.
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Figure 3. CDF of C metric for the 3 topologies.

Small Medium Large
Degree 2.41 (5) 4.39 (7) 5.50 (8)
Diameter 2.00 (5) 7.33 (10) 22.80 (25)
Routers 4.13 (12) 22.14 (30) 123.65 (130)

Table 1. Privacy metric rMSE versus (true value).

C. PRIVACY EVALUATION RESULTS

We can see in Tables 1 that the generalized standard deviation for each privacy

metric is low compared to the mean. As in the provider-customer setting, there is

little variation in the amount of information learned about each sensitive property

from each digest attack. We show the root mean squared error results in Table 2.

Since the rMSE values are high relative to the true value, the information about

the sensitive properties learned from the attacks results are generally far from the

true values. The results from both the provider-customer and peering settings are

encouraging, and a more robust digest creation algorithm can surely improve on the

results achieved by our straw man.

Node Domain Number
Degree Diameter Routers

gSTD 1.19 0.86 2.73
E(X) 2.76 2.78 7.85

Table 2. Privacy metric gSTD versus sample mean.
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Next we provide additional privacy protection data by calculating the relative

distance of our attack results against the true values for each sensitive property.

Our attacks never revealed the internal reachability between the visible gate-

ways. We believe that this unexpected result is due to an increased distance of one

hop between the gateway routers compared to the provider-customer gateways in our

small and medium physical topologies. The tested gateways are three, three, and two

hops distant in small, medium, and large topologies respectively.
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Figure 4. CDF relative error for the diameter property.

The relative distance between the true network diameter and the attack esti-

mate scaled with the topology size as shown in Fig. 4. At 50% mass of our experiments

the relative difference was approximately 40%, 70%, and 90% for the small, medium,

and large topologies respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative Difference of True Number of Routers to Estimate

F
ra

ct
io

n
 o

f 
S

ce
n

ar
io

s

small topology

medium topology

large topology

Figure 5. CDF relative error for the number of routers property.
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Likewise, protection for the number of routers increased with the size of the

topology as seen in Fig. 5. The difference between the true value and attack estimate

for 50% mass of the experiments is approximately 25%, 65%, and 95% for the small,

medium, and large topologies respectively.
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Figure 6. CDF relative error for the node degree property.

Privacy protection for maximum node degree scaled only slightly in the peering

domain relationship (Fig. 6) due to several nodes of higher degree in the internal

topology of domain D2. The node aggregation and Noisy-OR steps of the digest

creation algorithm contributed to hiding the true value of the highest-degree node for

most of the attacks, but approximately 9% of the attacks revealed the true high node

degree.

Again we see increased inherent protection for privacy metrics that scale with

domain size as the domain scales up. A stronger digest algorithm and post-processing

of a digest to remove any information over a predesignated threshold will intuitively

strengthen a digest against entropy loss to attack. Additionally, more robust attack

procedures would provide greater confidence about the privacy protection of a digest

algorithm.
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Small Medium Large
Topology Topology Topology

E 0.71 1.29 1.72

Table 3. Scalability results.

D. SCALABILITY EVALUATION RESULTS

The scalability (speed) improvement for the peering domain scenario (Table

3), while a significant and encouraging result and achieves order of magnitude im-

provement, is not as dramatic as that observed in the provider-customer setting. In

the peering scenario the domain performing inference has a larger structure, resulting

in a greater number of hypotheses for the inference engine to consider.
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VI. RELATED WORK

Steinder and Sethi introduce fault localization as the second step in fault

diagnosis following fault detection and preceding testing [2, 7, 14]. Network admin-

istrators use fault localization techniques to discover best hypotheses explaining the

observations detected in the fault detection step. Myriad techniques have been devel-

oped for intra-domain fault localization, including: rule-based systems, model-based

systems, case-based systems, neural networks, decision trees, model traversing tech-

niques, code-based techniques, Bayesian networks, dependency graphs, causal graphs,

and phrase structured grammars [14].

The SCORE [8], SHRINK [6], and Sherlock [1] approaches form the state of

the art for leveraging causal graphs for fault localization. SCORE uses a set covering

approach for finding the best explanation (set of failed SRGs) for observed outages

based on a bipartite graph. SHRINK enhances the model to allow probabilistic in-

ference by attaching edge weights that are combined using the noisy-OR [10] model

to form conditional probability tables for each observation node. Sherlock further

extends these approaches with multilevel causal graphs.

We tested our evaluation methodology by using the cross-domain framework

proposed by Fischer et al [4]. Steinder and Sethi [15] also proposed a cross-domain

fault localization solution. However, it is specifically designed for hierarchically or-

ganized networks. This approach locates the source of an end-to-end service failure

through distributed coordination between the domains along the path of the failure.

In addition to an existing domain hierarchy, the approach relies on full knowledge of

each end-to-end data path at the domain level.
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VII. DISCUSSION

In this section, we first provide two broad interpretations of our experimental

results. We then briefly discuss some of the limitations of our experiments.

A. BROAD INTERPRETATIONS

A new direction for digest creation. One of the surprises from our exper-

iments is that the proposed metric gSTD is much more effective than we expected at

gaging the performance of the digest-creation algorithm in hiding the values of sen-

sitive properties. While further investigations are required to validate the generality

of such effectiveness, the results give weight to an alternative approach for creating

graph-digests: Instead of allowing a digestion algorithm to produce variable sized

digest causal graphs, we may constrain the size and/or structure of the graph digest

a prior, similar to the way in which a secure hash function has a predefined fixed

width in bits (e.g., 512 bits for SHA-512) for all hash values. The primary advantage

of this approach is that gSTD would be small regardless of scenarios. However, this

approach also brings up a challenge. By restricting the size and structure of a graph

digest, it might be difficult to encode within it sufficient information to support in-

ference for large scenarios. We believe this is an interesting and important topic for

future work.

Importance of cross-domain issues. The experimental results reaffirm our

observation that we need more research efforts in this space. In all topologies simu-

lated, we have discovered a number of scenarios where domains cannot troubleshoot

effectively in isolation. We expect a large portion of the real world scenarios to be

more complicated than what we evaluated. Therefore, the need for cross-domain

solutions is real. In addition to the development of better metrics and algorithms,

an emphasis should be placed on the creation of new theories for reasoning about
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what can and cannot be achieved in balancing the trade-off between inference accu-

racy and privacy protection. Appropriate mechanisms, trust models, and policy must

also be developed to support the exchange of causal graph digests and other relevant

information (e.g., shared attributes) between domains in collaboration.

B. LIMITATIONS

Beyond visual checks of ”Does this seem reasonable?”, we have not validated

how well our simulations model reality. There is little or no publicly available data to

allow this validation. Obtaining troubleshooting records from one domain operator is

challenging enough. Collecting such sensitive data from a group of connected domains

is almost impossible.

We did not model observation errors or missing observations when evaluating

inference accuracies. Such events are common in the real-world due to software bugs

or misconfigurations. We expect them to have a similar impact to all approaches and,

therefore, introduce very small perturbations to the A and C metrics.

We acknowledge some inherent bias in attacking the digests using attack

heuristics that we developed. This conflict stands as a necessary evil as our liter-

ature search did not uncover a methodology for attacking network causal graphs. We

are able to reveal the entire network structure of our undigested causal graphs using

our attack heuristics, indicating a sound baseline attack method.

Our core network causal graph model (SHRINK [6]) has a very simple struc-

ture. The structure has the advantage of easy inference but lacks expressiveness. In

particular, the bipartite nature makes compositing levels difficult. The Sherlock [1]

paper gives a more expressive model with much of the inference speed advantages.

Expanding the expressive power of the causal graph model requires new algorithms

for specifying shared attributes, combining graphs and for constructing digests. The

current algorithm for constructing digests incorporates network domain knowledge.

Techniques from the artificial intelligence and statistics communities for approximat-
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ing statistical distributions could be leveraged to produce smaller and more accurate

digests. Finally since performing fault localization with digests is significantly faster

than without, perhaps digests can be used internally in very large domains to yield

faster inference.
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VIII. CONCLUSIONS

We have presented the first comprehensive evaluation of the feasibility of cross-

domain fault localization. Our evaluation is systematic and complete with regarding

to all the proposed performance metrics.

Our goal was to answer the following questions:

1. Does cross-domain fault localization offer the kinds of benefits warranting fur-
ther research?

2. Can it provide deployable and acceptable privacy protection with manageable
complexity?

The answer to both of these questions was a strong “Yes”. Cross-domain fault

localization, both with and without digests, performed quite well at finding the faults

in all of the scenarios. Of course, in practice not using digests is a non-starter —

domain administrators will be simply unwilling to reveal their complete topologies.

This brings us to the second question. The digest approaches did provide significant

performance gains compared with localization performed in isolation while measur-

ably protecting the sensitive properties we tested. The use of digests dramatically

increases the deployability of cross-domain fault localization by decreasing inference

time by two to three orders of magnitude. There is still some complexity involved

in determining which shared attributes must be modeled, but this effort should be

done anyways. Domain administrators need to know what services they are using

and providing.

While the answer to both these questions was a strong yes, we did discover

several opportunities for further research and enhancement including richer causal

graph models and better digest algorithms. This need underscores the importance of

having a repeatable evaluation methodology.
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